Estimates of Wildfire Emissions in Boreal Forests of China
نویسندگان
چکیده
Wildfire emissions in the boreal forests yield an important contribution to the chemical budget of the troposphere. To assess the contribution of wildfire to the emissions of atmospheric trace species in the Great Xing’an Mountains (GXM), which is also the most severe fire-prone boreal forest region in China, we estimated various wildfire activities by combining explicit spatio-temporal remote sensing data with fire-induced emission models. We observed 9998 fire scars with 46,096 km2 in the GXM between the years 1986 and 2010. The years 1987 and 2003 contributed 33.2% and 22.9%, respectively, in burned area during the 25 years. Fire activity is the strongest in May. Most large fires occurred in the north region of the GXM between 50 ̋ N and 54 ̋ N latitude due to much drier weather and higher fire danger in the northern region than in the southern region of the study domain. Evergreen and deciduous needleleaf forest and deciduous broadleaf forest are the main sources of emissions, accounting for 84%, 81%, 84%, 87%, 89%, 86%, 85% and 74% of the total annual CO2, CH4, CO, PM10, PM2.5, SO2, BC and NOx emissions, respectively. Wildfire emissions from shrub, grassland and cropland only account for a small fraction of the total emissions level (approximately 4%–11%). Comparisons of our results with other published estimates of wildfire emissions show reasonable agreement.
منابع مشابه
Wildfires threaten mercury stocks in northern soils
[1] With climate change rapidly affecting northern forests and wetlands, mercury reserves once protected in cold, wet soils are being exposed to burning, likely triggering large releases of mercury to the atmosphere. We quantify organic soil mercury stocks and burn areas across western, boreal Canada for use in fire emission models that explore controls of burn area, consumption severity, and f...
متن کاملMechanisms of Soil Carbon Stabilization in Black Spruce Forests of Interior Alaska: Soil Temperature, Soil Water, and Wildfire
and Overview: The likely direction of change in soil organic carbon (SOC) in the boreal forest biome, which harbors roughly 22% of the global soil carbon pool, is of marked concern because climate warming is projected to be greatest in high latitudes and temperature is the cardinal determinant of soil C mineralization. Moreover, the majority of boreal forest SOC is harbored in surficial organic...
متن کاملCarbon, Trace Gas, and Particulate Emissions from Wildfires in the Boreal Regions of North America
Large wildfires have a considerable impact on the atmospheric concentrations of CO2, CO, O3, NOx, and CH4 across North America. Carbon releases can be as high as 4 to 8 kg C-m per fire event. These emissions significantly affect concentrations far downwind. With funding from NASA, the Joint Fire Science Program, NSF, and the Canadian Government, US and Canadian researchers have been developing ...
متن کاملVulnerability of carbon storage in North American boreal forests to wildfires during the 21st century
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies eac...
متن کاملForests and rangelands? wildfire risk zoning using GIS and AHP techniques
Wildfire in forests and rangelands, apart from its initiating causes, is considered as an ecological disaster. Zoning natural areas according to their susceptibility to fire helps to put off operations and reduces catastrophic losses caused through a wise management plan. In this study, the zoning map of wildfire risk in forest and rangeland areas has been produced using GIS, Analytical Hierarc...
متن کامل